Exercise Sheet 10

Discussed on 30.06.2021

Problem 1. Let $S_0 \hookrightarrow S$ be a thickening of locally noetherian schemes (i.e. a surjective closed immersion). Let X and Y be abelian schemes over S and let $f_0: S_0 \cdot S X \to S_0 \cdot S Y$ be a morphism of abelian schemes over S_0 . Show that there is at most one "deformation" of f_0 , i.e. a homomorphism $f: X \to Y$ of abelian schemes over S which restricts to f_0 over S_0 .

Problem 2. Let k be an algebraically closed field of characteristic p > 0. In the following you may use without proof that every finite group scheme over k of order p is isomorphic to $\mathbb{Z}/p\mathbb{Z}$, μ_p or α_p .

(a) Compute $\operatorname{End}(\mu_p)$ and $\operatorname{End}(\alpha_p)$. Prove that for a supersingular elliptic curve E over k, the kernel of Frobenius $F: E \to E^{(p)}$ is isomorphic to α_p .

Hint: $\mathcal{O} = \operatorname{End}(E)$ is a maximal order in a quaternion algebra and has a valuation $v \colon \mathcal{O} \to \mathbb{Z} \cup \{\infty\}$ with v(p) = 2. Argue that the "residue field" $\mathcal{O}/\mathcal{O}_{v>0}$ cannot map to $\operatorname{End}(\mu_p)$.

- (b) Show that $\operatorname{Hom}(\mu_p, \alpha_p) = 0$ and deduce that every subgroup $G \subset (\alpha_p)^m$ of order p is isomorphic to α_p .
- (c) Let $X = E^m$ be the *m*-fold self-product of a supersingular elliptic curve *E* over *k*. Show that there is a canonical bijection

{closed subgroups $K \subset X$ of order p} $\xrightarrow{\sim} \mathbb{P}^{m-1}(k)$.

(d) Show that for only finitely many of these K, the quotient X/K is isomorphic to $E_1 \times \cdots \times E_m$ for some elliptic curves E_1, \ldots, E_m .

Hint: Show first that there are only finitely many possible choices of E_1, \ldots, E_m . Then note that if a map $\phi: X \to E_1 \times \cdots \times E_m$ has a kernel of order p, then this kernel only depends on ϕ modulo p.

(*e) Prove a more precise version of (c): The functor parametrizing subgroups of order p is defined as

 $Q: S \mapsto \{\text{finite locally free closed } S \text{-subgroup schemes } K \subset X_S \text{ of degree } p \text{ over } S \},\$

where S ranges through k-schemes. Show that Q is represented by \mathbb{P}^{m-1} .

Hint: Show first that $\operatorname{End}(\alpha_{p,S}) = \mathcal{O}_S(S)$ for all k-schemes S. Then comes the tricky part: Say $S = \operatorname{Spec} R$ and $K = \operatorname{Spec} A$. Write $A = R \oplus I$, where I is the ideal defining the unit section $e: S \to K$. Consider the "linear" elements

$$L := \{ x \in I \mid m_K^*(x) = x \otimes 1 + 1 \otimes x \}.$$

Using the existence of an embedding $K \hookrightarrow (\alpha_{p,S})^m$, prove that L is projective of rank 1 over R. If L = Rx, e.g. after localizing on Spec R, show that $A = \bigoplus_{i=0}^{p-1} Rx^i$. Deduce that K is locally on S isomorphic to $\alpha_{p,S}$.